organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Hydroxy-*N'*-isopropylidene-2-naphthohydrazide

See Mun Lee, Kong Mun Lo, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 November 2009; accepted 24 November 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.113; data-to-parameter ratio = 9.1.

The title Schiff base, $C_{14}H_{14}N_2O_2$, is close to being planar (r.m.s. deviation for the non-hydrogen atoms = 0.052 Å) and an intramolecular $N-H\cdots O$ hydrogen bond generates an S(6) ring. In the crystal, the moleucles are linked by $O-H\cdots O$ hydrogen bonds, giving rise to helical chains propagating along the *c* axis of the tetragonal unit cell.

Related literature

For the crystal structure of 2'-(2-isopropylidene)-2-hydroxybenzohydrazide monohydrate, see: Kraudelt *et al.* (1996).

Experimental

Crystal data

 $C_{14}H_{14}N_2O_2$ $M_r = 242.27$ Tetragonal, $P\overline{4}2_1c$ a = 13.7343 (3) Åc = 12.8253 (3) Å $V = 2419.25 (8) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX diffractometer 16460 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.113$ S = 1.011566 reflections 173 parameters 2 restraints 1566 independent reflections 1341 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$

 $0.35 \times 0.15 \times 0.05 \text{ mm}$

T = 123 K

 $D \cdot \cdot \cdot A$

 $D - H \cdot \cdot \cdot A$

153(3)

136(2)

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (grant No. RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5249).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kraudelt, H., Ludwig, E., Schilde, U. & Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563–566.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o3282 [doi:10.1107/S1600536809050661]

3-Hydroxy-N'-isopropylidene-2-naphthohydrazide

S. M. Lee, K. M. Lo, H. M. Ali and S. W. Ng

Experimental

The title Schiff base was obtained as a side product from the reaction between 3-hydroxy-2-naphthoic hydrazide (1 g, 5 mmol) and 4-chlorobenzaldehyde (0.7 g, 5 mmol) in acetone. Colourless irregular chunks of (I) were obtained when the solvent was allowed to evaporate slowly.

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement.

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C). The amino and hydroxy H-atoms were located in a difference Fourier map and were refined with distance restraints of N–H 0.88±0.01 Å and O–H 0.84±0.01 Å.

Figures

Fig. 1. The molecular structure of (I) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3-Hydroxy-N'-isopropylidene-2-naphthohydrazide

Crystal	data
---------	------

$C_{14}H_{14}N_2O_2$	$D_{\rm x} = 1.330 {\rm ~Mg~m^{-3}}$
$M_r = 242.27$	Mo K α radiation, $\lambda = 0.71073$ Å
Tetragonal, $P\overline{4}2_1c$	Cell parameters from 2887 reflections
Hall symbol: P -42 n	$\theta = 2.2 - 26.0^{\circ}$
a = 13.7343 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.8253 (3) Å	<i>T</i> = 123 K
V = 2419.25 (8) Å ³	Irregular, colourless
Z = 8	$0.35 \times 0.15 \times 0.05 \text{ mm}$
F(000) = 1024	

Data collection

Bruker SMART APEX diffractometer	1341 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.055$

graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -17 \rightarrow 17$
16460 measured reflections	$k = -17 \rightarrow 17$
1566 independent reflections	$l = -16 \rightarrow 16$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0711P)^{2} + 0.6133P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
Absolute structure: Friedel pairs were merged

methods

Fractional	atomic	coordinates	and	isotronic	or	equivalent	isotronic	displacement	narameters	$(\AA^2$)
1 ruciionui	uiomic	coordinates	unu	isonopie	01	cquivaicni	isonopie	uspiacemeni	parameters	(11)	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.89011 (13)	0.64858 (12)	0.81784 (12)	0.0232 (4)
H1O	0.879 (3)	0.649 (3)	0.8825 (10)	0.047 (10)*
O2	0.86201 (14)	0.70322 (12)	0.49816 (12)	0.0268 (4)
N1	0.87509 (16)	0.58826 (14)	0.62381 (16)	0.0213 (4)
H1N	0.875 (2)	0.5750 (19)	0.6910 (9)	0.026 (8)*
N2	0.86924 (15)	0.51398 (15)	0.55082 (15)	0.0244 (5)
C1	0.88285 (16)	0.74227 (16)	0.78288 (18)	0.0185 (5)
C2	0.88364 (17)	0.81988 (17)	0.85018 (18)	0.0203 (5)
H2	0.8892	0.8081	0.9229	0.024*
C3	0.87638 (16)	0.91683 (17)	0.81435 (18)	0.0197 (5)
C4	0.87394 (18)	0.99834 (18)	0.88226 (19)	0.0241 (5)
H4	0.8786	0.9887	0.9554	0.029*
C5	0.86503 (19)	1.09039 (18)	0.8436 (2)	0.0275 (6)
H5	0.8640	1.1441	0.8902	0.033*
C6	0.8573 (2)	1.10692 (18)	0.7353 (2)	0.0297 (6)
H6	0.8505	1.1714	0.7094	0.036*
C7	0.85970 (19)	1.03001 (18)	0.6677 (2)	0.0273 (6)
H7	0.8548	1.0413	0.5949	0.033*
C8	0.86940 (17)	0.93370 (16)	0.70538 (19)	0.0195 (5)
C9	0.86959 (17)	0.85281 (18)	0.63782 (19)	0.0215 (5)
Н9	0.8657	0.8640	0.5648	0.026*
C10	0.87513 (17)	0.75829 (17)	0.67298 (18)	0.0192 (5)
C11	0.87014 (17)	0.68105 (17)	0.59108 (18)	0.0196 (5)
C12	0.87295 (18)	0.42740 (19)	0.5869 (2)	0.0257 (5)

supplementary materials

C13	0.8674 (2)	0.3471 (2)	0.5088 (2)	0.0374 (7)
H13A	0.8575	0.3747	0.4392	0.056*
H13B	0.8129	0.3040	0.5261	0.056*
H13C	0.9282	0.3098	0.5099	0.056*
C14	0.8808 (2)	0.39944 (19)	0.7001 (2)	0.0322 (6)
H14A	0.9250	0.4445	0.7357	0.048*
H14B	0.9063	0.3330	0.7056	0.048*
H14C	0.8163	0.4026	0.7325	0.048*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0343 (9)	0.0223 (8)	0.0130 (8)	0.0004 (7)	0.0001 (7)	0.0022 (7)
O2	0.0375 (10)	0.0294 (9)	0.0134 (8)	-0.0015 (8)	-0.0012 (8)	-0.0008 (7)
N1	0.0261 (11)	0.0248 (10)	0.0130 (9)	0.0002 (8)	-0.0002 (8)	-0.0008 (8)
N2	0.0253 (10)	0.0272 (10)	0.0205 (10)	-0.0010 (9)	0.0007 (9)	-0.0064 (9)
C1	0.0166 (11)	0.0208 (11)	0.0179 (11)	-0.0003 (9)	0.0005 (9)	0.0015 (9)
C2	0.0195 (12)	0.0284 (12)	0.0130 (10)	-0.0013 (10)	-0.0018 (9)	-0.0009 (9)
C3	0.0139 (10)	0.0254 (11)	0.0198 (11)	-0.0003 (9)	-0.0002 (9)	0.0000 (10)
C4	0.0235 (12)	0.0253 (12)	0.0235 (12)	0.0007 (10)	-0.0026 (10)	-0.0041 (10)
C5	0.0265 (13)	0.0223 (12)	0.0337 (14)	0.0017 (11)	-0.0006 (12)	-0.0053 (11)
C6	0.0296 (13)	0.0227 (12)	0.0368 (14)	0.0015 (10)	0.0010 (12)	0.0052 (11)
C7	0.0313 (14)	0.0279 (13)	0.0226 (12)	0.0020 (11)	-0.0009 (11)	0.0070 (10)
C8	0.0147 (10)	0.0228 (11)	0.0211 (11)	-0.0004 (9)	-0.0016 (9)	0.0014 (9)
C9	0.0201 (11)	0.0288 (12)	0.0155 (10)	-0.0003 (10)	-0.0003 (9)	0.0027 (10)
C10	0.0167 (11)	0.0242 (11)	0.0168 (11)	-0.0018 (9)	-0.0005 (9)	-0.0014 (9)
C11	0.0160 (10)	0.0262 (12)	0.0167 (11)	-0.0017 (9)	0.0004 (9)	-0.0025 (9)
C12	0.0198 (11)	0.0274 (12)	0.0298 (13)	-0.0026 (10)	-0.0002 (11)	-0.0052 (10)
C13	0.0339 (14)	0.0336 (14)	0.0446 (16)	0.0000 (12)	0.0029 (14)	-0.0146 (13)
C14	0.0337 (14)	0.0281 (13)	0.0348 (15)	-0.0026 (11)	-0.0025 (12)	0.0035 (12)

Geometric parameters (Å, °)

O1—C1	1.366 (3)	C6—C7	1.367 (4)
O1—H1O	0.843 (10)	С6—Н6	0.9500
O2—C11	1.235 (3)	С7—С8	1.414 (3)
N1—C11	1.344 (3)	С7—Н7	0.9500
N1—N2	1.387 (3)	C8—C9	1.409 (3)
N1—H1N	0.880 (10)	C9—C10	1.376 (3)
N2—C12	1.277 (3)	С9—Н9	0.9500
C1—C2	1.372 (3)	C10-C11	1.494 (3)
C1—C10	1.430 (3)	C12—C13	1.492 (4)
C2—C3	1.412 (3)	C12—C14	1.505 (4)
С2—Н2	0.9500	С13—Н13А	0.9800
С3—С8	1.420 (3)	С13—Н13В	0.9800
C3—C4	1.419 (3)	С13—Н13С	0.9800
C4—C5	1.364 (4)	C14—H14A	0.9800
C4—H4	0.9500	C14—H14B	0.9800
C5—C6	1.411 (4)	C14—H14C	0.9800

supplementary materials

С5—Н5	0.9500			
C1—O1—H1O	108 (2)	С9—С8—С3		118.5 (2)
C11—N1—N2	118.94 (19)	С7—С8—С3		119.7 (2)
C11—N1—H1N	120.1 (18)	С10—С9—С8		122.8 (2)
N2—N1—H1N	120.6 (18)	С10—С9—Н9		118.6
C12—N2—N1	116.0 (2)	С8—С9—Н9		118.6
O1—C1—C2	121.7 (2)	C9—C10—C1		118.2 (2)
O1—C1—C10	118.27 (19)	C9—C10—C11		115.9 (2)
C2-C1-C10	120.1 (2)	C1-C10-C11		125.9 (2)
C1—C2—C3	121.8 (2)	O2-C11-N1		122.7 (2)
C1—C2—H2	119.1	O2-C11-C10		120.5 (2)
С3—С2—Н2	119.1	N1-C11-C10		116.8 (2)
C2—C3—C8	118.6 (2)	N2-C12-C13		116.3 (2)
C2—C3—C4	123.1 (2)	N2-C12-C14		126.2 (2)
C8—C3—C4	118.3 (2)	C13—C12—C14		117.5 (2)
C5—C4—C3	120.7 (2)	C12—C13—H13A		109.5
С5—С4—Н4	119.7	C12—C13—H13B		109.5
С3—С4—Н4	119.7	H13A—C13—H13B		109.5
C4—C5—C6	120.9 (2)	С12—С13—Н13С		109.5
С4—С5—Н5	119.5	H13A—C13—H13C		109.5
С6—С5—Н5	119.5	H13B—C13—H13C		109.5
C7—C6—C5	119.9 (2)	C12—C14—H14A		109.5
С7—С6—Н6	120.1	C12—C14—H14B		109.5
С5—С6—Н6	120.1	H14A—C14—H14B		109.5
C6—C7—C8	120.6 (2)	C12—C14—H14C		109.5
С6—С7—Н7	119.7	H14A—C14—H14C		109.5
С8—С7—Н7	119.7	H14B—C14—H14C		109.5
C9—C8—C7	121.9 (2)			
C11—N1—N2—C12	-179.0(2)	C7—C8—C9—C10		-177.4 (2)
01 - C1 - C2 - C3	179.9 (2)	C3—C8—C9—C10		0.8 (4)
C10-C1-C2-C3	0.4 (4)	C8—C9—C10—C1		-1.2(4)
C1—C2—C3—C8	-0.9 (4)	C8—C9—C10—C11		177.5 (2)
C1 - C2 - C3 - C4	178.0 (2)	01-C1-C10-C9		-178.9(2)
C2—C3—C4—C5	-178.8(2)	C2-C1-C10-C9		0.6 (4)
C8—C3—C4—C5	0.1 (4)	01—C1—C10—C11		2.6 (4)
C3—C4—C5—C6	0.5 (4)	C2-C1-C10-C11		-177.9 (2)
C4—C5—C6—C7	-0.6 (4)	N2—N1—C11—O2		-1.1 (4)
C5—C6—C7—C8	0.3 (4)	N2—N1—C11—C10		179.0 (2)
C6—C7—C8—C9	178.4 (2)	C9—C10—C11—O2		0.3 (3)
C6—C7—C8—C3	0.2 (4)	C1-C10-C11-O2		178.9 (2)
C2—C3—C8—C9	0.3 (4)	C9-C10-C11-N1		-179.8 (2)
C4—C3—C8—C9	-178.6 (2)	C1-C10-C11-N1		-1.2 (4)
C2—C3—C8—C7	178.5 (2)	N1—N2—C12—C13		-179.6 (2)
C4—C3—C8—C7	-0.4 (4)	N1—N2—C12—C14		1.4 (4)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

O1—H10···O2 ⁱ	0.84 (1)	1.870 (19)	2.648 (2)	153 (3)
N1—H1n…O1	0.88 (1)	1.93 (2)	2.631 (2)	136 (2)
Symmetry codes: (i) $-y+3/2$, $-x+3/2$, $z+1/2$.				

